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Abstract: Machine learning assembles a broad set of methods and techniques to solve a wide
range of problems, such as identifying individuals with substance use disorders (SUD), finding
patterns in neuroimages, understanding SUD prognostic factors and their association, or determining
addiction genetic underpinnings. However, machine learning use in the addiction research field
continues to be insufficient. This two-part review focuses on machine learning tools and concepts and
provides insights into their capabilities to facilitate their understanding and acquisition by addiction
researchers. In this first part, we present supervised and unsupervised methods and techniques
such as linear models, naive Bayes, support vector machines, artificial neural networks, k-means,
or principal component analysis and examples of how these tools are already in use in addiction
research. We also provide open-source programming tools to apply these techniques. Throughout
this work, we link machine learning techniques to applied statistics. Machine learning tools and
techniques can be applied to many addiction research problems and can improve addiction research.
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1. Introduction

Several biomedical research domains, including addiction, successfully applied ma-
chine learning methods and techniques in the last decade. Machine learning can be applied
to solve a wide range of problems, such as identifying individuals with substance use
disorders (SUD) (1), evaluating treatment success (2), finding patterns on brain images (3),
understanding SUD prognostic factors and their association (4), or identifying addiction
genetics underpinnings (5). In all these scenarios, the use of the rich analytical machine
learning toolbox can improve results.

Despite its advantages, the application of machine learning in addiction research is
still scarce (6). In a recent search in PubMed, we found less than 200 articles about machine
learning and addiction (Figure 1). Other bibliographical surveys present similar figures (6).
Although the number has been increasing in the last year, articles using machine learning
make only 0.25There is no doubt about the improvements that machine learning can bring
for many application domains, in particular, in the health sciences (7). Comprising a wide
variety of methods, machine learning can help answer a broad set of research questions.

The use of machine learning in most of the subdomains of addiction research continues
to be insufficient, probably, due to the lack of understanding about these methods, which
are often seen as black boxes. Besides, machine learning jargon differs substantially from
that of the familiar applied statistics field, even when several concepts are the same. The
field of machine learning is sufficiently mature that many of the tools and techniques are
accessible to researchers with a very reasonable amount of effort. For instance, free and
open-source software implementations of all discussed methods are readily available.

This machine learning review aims to bring closer these concepts, methods, and
implementations. We will open the black box and show what tools are available and how to
use them. We will also relate machine learning concepts to more familiar statistical terms.
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Figure 1. Articles of addiction research applying machine learning according to a PubMed search.
The basic research, images, prediction, and text mining groups identify articles according to their
use of machine learning depending on the data or scientific context presented. The plot shows the
evolution of the use of machine learning in addiction research since 1995.
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This article is the first part of this review of machine learning in addiction research. We
start by introducing foundational concepts of machine learning, followed by a description
of tools and available methods. For every machine learning technique, we offer a reference
to open source software implementing it. The second part illustrates the machine learning
process, intending to consolidate the concepts, methods, and techniques presented in the
first part (8). We provide a glossary (in the supplemental material) with standard machine
learning terms (featured in italics) and their equivalents in applied statistics, the most
relevant ones are displayed in Appendix 5.

2. Potential of Machine Learning

From a black-box perspective, machine learning is a set of different computational
and statistical tools commonly used to provide an automated solution for a repetitive task,
based on examples that have been typically solved by human experts. Far from a magic
device, machine learning tools are a natural extension of traditional statistical approaches
towards automation. There is a continuum between traditional statistical models (with
components specified by humans) and a fully machine-guided data analysis (9).

Machine learning assembles techniques that learn from experience to improve their
performance at a given task (e.g., clustering, classification, prediction) (10). Experience
is leveraged from observed data, from which actionable information is extracted in the
form of a model using an algorithm. There are three elements in common in every learning
problem: the task’s class to be resolved, the observed data, and the performance measure
to be improved (10). Model performance is evaluated during the learning process in order
to improve it by estimating algorithm parameters. There is a wide variety of use cases
of machine learning in addiction research, including but not limited to SUD prediction,
discerning a binging from a non-binging event, identifying genes linked to addiction, or
detecting and connecting words from tweets related to opioid unhealthy use. For the
problems above, observed data can be from different sources: electronic health records,
questionnaires or interviews, genomic data, or thousands of tweets, respectively. The
performance measure should also be in agreement with the task.

It is common to classify machine learning methods into two main categories: super-
vised and unsupervised (10, 11). Supervised methods require an outcome, response, or
dependent variable, which is the task target. The task target guides or supervises (as is com-
monly said in the machine learning community) the learning process. A set of independent
variables or features relevant to predict or explain the response represent each observation.
Thus, a machine learning method finds and uses a relationship between the independent
variables and the response, inferring a model that links them. The model is then used to
accurately predict a previously unseen observation (a classification or prediction task) or
to reach a better understanding between the response and the independent variables (an
inference task) (11). Supervised methods can answer the following questions: How can
we identify a risk population? What are the most relevant variables associated with SUD?
How can we distinguish patients with and without SUD?

There are many approaches to discover the relation between response and independent
variables, and usually, several good relations to be discovered in a given dataset. However,
it is usually unfeasible to find and evaluate all possible relations, so methods find only the
most promising. When evaluating relations between independent variables and predictions,
methods have to balance bias and variance. If variance is prioritized, the resulting model
tends to suffer from overfitting, that is, a model that reproduces training examples without
generalization. Conversely, if bias is prioritized, then the resulting model will be very
similar to the starting hypothesis and valuable information from the data will probably be
missed. It is crucial that machine learning methods find a good balance between these two
objectives in order to obtain valuable models of data. For a deeper discussion of these and
other foundational concepts, see Appendix 5.

While supervised methods imply an underlying relationship between the outcome and
the independent variables, unsupervised methods most often help explore and discover
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patterns in the data. They work without a response variable. There is not a ‘right answer’
to supervise the analysis (11). Unsupervised machine learning can group observations
with certain similarities into clusters and combine (partially) redundant features into new
ones. These methods can handle questions such as: Is there a way to find, in a high number
of participants, groups that share characteristics, even when we do not know what may
relate them in the first place? How can Twitter users be grouped considering their tweet
production regarding alcohol use? Can we reduce the dimension or compile items from
extensive questionnaires in a more useful way? Some specific areas of machine learning,
like image and natural language processing, time series analysis, or reinforcement learning,
require an amount of specific knowledge that is beyond the scope of this review. However,
they can still be used at a high level of abstraction as black boxes. An outline of such areas
and approaches can be seen in Box 2.

Next, we dissect in more detail supervised and unsupervised machine learning meth-
ods and their application to addiction research. All discussed techniques are readily
available through free and open-source software implementations in R or Python pro-
gramming languages (13,14). The functions for each algorithm are usually in specialized
libraries. Appendix 5 provides a primer toolbox for both languages.

3. Using supervised machine learning for prediction

One of the most frequent uses of machine learning is to make predictions (6,15), for
example, to distinguish individuals (e.g., with and without a binge drinking behavior (16))
or predict an event (e.g., an opioid overdose (17)). To address this kind of problem, we can
use machine learning supervised methods. In this type of approach, we can identify a set
of predictor variables and a response or target variable. According to the type of response,
these methods are regressions or classifications (10, 11). In the former, the response is a
number such as a score (18) or the age of SUD onset (19). In classification problems, the
response most often organizes into categories (e.g., the occurrence of an opioid overdose
(17)).

The complexity of the prediction model is another aspect to consider. It depends on
the kind of question we seek to answer, what data are available, and the kind of relationship
between predictors and the outcome (7). Generalized linear models often work well to
address questions for which we have relatively small datasets with a relatively reduced
number of predictors (7, 8). In many cases, linear models are the best alternative and often
recommended, at a minimum, as a starting model. However, prediction tasks with a high
number of features and known dependencies between predictors and observations, such
as neuroimaging, require techniques capable of modeling more complex phenomena such
as artificial neural networks (7, 17).

Simpler models usually have stronger assumptions. A linear relationship, the base of
linear models, can be a much too restrictive assumption about a given problem, unable to
capture complex data relationships. Several methods relax the linearity constraint resulting
in more expressive models that can capture more complex data relationships. Nevertheless,
there is a tradeoff between expressivity and generalization. Methods that model data too
closely may incorporate anecdotal phenomena, errors, or noise. They cannot generalize
correctly and, at the same time, are more sensitive to small data changes. When a model
fits the data following anecdotal information too closely, it suffers from overfitting (11).
Overfitting is undesirable because a model excessively fitted to one set of data will not make
accurate predictions for unseen data. A useful analogy to understand model overfitting is
to equate the model to a student who fails a test because they prepared only by memorizing
answers from previous tests, instead of learning general patterns that apply to new test
questions. In terms of interpretability, more straightforward methods are usually easier
to understand than more complex and expressive ones. For instance, with some methods,
such as neural networks, it can be completely opaque how predictors relate to the response.
Thus, interpretability can be another factor to consider when choosing a method.
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In what follows, we describe prediction models starting with the simplest linear
models and finishing with algorithms capable of representing more complex phenomena.

3.1. Linear models for continuous outcomes

Regarding regression methods, the simplest and most restrictive model is multiple
linear regression. It is one of the most widely used and considered a good starting point to
solve problems with a numeric response variable. For example, Locke et al (21) used linear
regression to examine the relationship of an interpersonal guilt score, a numerical response
variable, with SUD while adjusting by sociodemographic covariates. The simplicity of
linear regression makes it unbeatable at interpretation and computational requirements.

A more sophisticated variant of linear regression is penalized or regularized regres-
sion. Penalized regression is slightly more computationally expensive but powerful due
to using a different method of estimation. Penalized regression incorporates a penalty (or
regularization) term in the linear model, which allows the model to obtain a smooth model
that leaves out anecdotal or noisy information from the data to obtain better generalizations
(2,11). The least absolute shrinkage and selection operator (lasso), ridge regression, and
elastic net are different penalized regression parameterizations. While lasso forces some co-
efficients to be zero, ridge regression keeps them in the final model, and the elastic net is an
intermediate between the strong lasso and the less restrictive ridge regularizations. Lasso
can eliminate less useful predictors, which is most suitable for problems with many predic-
tors that exceed the number of observations (also known as the curse of dimensionality or
k > n problem). Ridge regression is better than lasso when variables are highly correlated,
while lasso keeps the interpretability of multiple linear regression, making it possible to
deal with an exceedingly high number of predictors (2). In addiction research, Morozova
et al. (22) compared the performance of lasso and stepwise regression for selecting relevant
variables for the association between SUD-related variables and a quality-of-life score,
showing disparities between the variables that each method had selected.

When linearity is too simple for the problem at hand, polynomial regression allows
accommodating non-linear relationships between predictors and a target by raising each
of the original predictors to a power (11). Alternatively, step functions cut the range of a
variable into several distinct regions and generate a categorical variable, fitting a piecewise
constant function to each region (11). Regression splines are an extension of polynomial
regression and step functions; they divide the range of the predictors into several regions
and fit in each region a polynomial function (11). Interestingly, Linden-Carmichael et al.
(23) applied regression splines to predict alcohol use disorder (AUD) prevalence according
to the number of drinks in the past year. The authors used the regression spline curves to
find a threshold for the number of drinks for which the AUD prevalence rate stabilizes.
Smoothing splines modify regression splines by adding a penalty term that constraints
their expressivity, and thus their capacity to overfit the data (11).

Generalized additive models (often referred to as GAMs) maintain the principle of
additivity of all models mentioned before (i.e., predictors are summed to each other rather
than multiplied by each other to predict an outcome) using a different function for ac-
counting for each predictor. Generalized additive models use building blocks where each
predictor can relate to the target through its functional form (11). Chilcoat and Schütz
(24) used generalized additive models with smoothing splines to analyze the association
between the use of hallucinogens (a binary outcome) with age, adjusting by sociodemo-
graphic covariates. This approach allowed them to detect a nonlinear relationship between
age and hallucinogen use.

3.2. Linear models for binary outcomes

The method most similar to linear regression for predicting binary and other cate-
gorical outcomes is logistic regression (25). This is the baseline technique for categorical
prediction, usually applied to compare with more complex approaches. However simple, if
the representation of the problem is adequate, logistic regression provides excellent results,
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as seen in the study of Sears and Anthony (26), where logistic regression obtained the same
performance as the far more complex artificial neural networks (presented at the end of this
section) to assess adolescent marijuana use based on survey questions about the history of
alcohol and tobacco consumptions. Frequently, when logistic regression is compared with
other machine learning methods, it falls within those with the best performance (2,4).

Support vector machines (often referred to as SVMs) are also a handy and cost-efficient
linear classifier, and they include a generic method to improve the representation of the
problem for classification purposes. They avoid the computational cost of high dimension-
ality by exploiting mathematical properties and avoid overfitting. In the addiction domain,
Kornfield et al. (27) used support vector machines to triage messages of persons seeking
online support from an addiction recovery forum. Mete et al. (28) applied support vector
machines to brain images and identified patients with cocaine use disorder from those
without it.

3.3. Bayesian approaches

Another straightforward, widely used machine learning method for classification is the
Naive Bayes algorithm. This method naively assumes independence between predictive
variables. Naive Bayes selects the class with the highest probability, according to the
conditional probability of the features, the probability of a class given the predictor variables
probability (11,12). Mumtaz et al. (29) applied Naive Bayes, logistic regression, and support
vector machine to identify individuals with AUD from healthy controls, using resting-state
EEG-derived features, obtaining similar performance for the three methods with slightly
better accuracy, but less sensitivity, for SVM than Naive Bayes. However, while it may
perform well in some scenarios, in many others, the underlying assumption that each
variable is independent of the rest does not hold, and the oversimplification of the Naive
Bayes assumptions may provide inadequate results (30).

Other Bayesian methods can capture complex relations between phenomena, but
the mathematical machinery to do that, for example, Bayesian nets, is very complex and
beyond this work’s scope.

3.4. K-nearest neighbors

The k-nearest neighbors’ algorithm (often referred to as k-NN) is a non-parametric
method used for classification and regression (31). In both cases, the input consists of
the training examples and their location in the space defined by features or independent
variables. For a new instance that needs to be classified, the k-nearest neighbors’ algorithm
finds the training instances closest to it in the feature space and assigns the new instance
with the value provided by training those instances, either discrete (by voting) or continu-
ous (by averaging, possibly weighted by distance). In this approach, the feature space fully
determines the output.

3.5. Ensemble models

There are several other powerful methods in machine learning classified under the
umbrella of ensemble methods. This term refers to machine learning algorithms that
combine multiple models. The underlying idea is that an ensemble could be better than
any of its constituents, capturing more complex characteristics, decreasing overfitting or
prediction variability. These models apply the same algorithm to different versions of a
data set (e.g., random forests) or applying a combination of algorithms (e.g., super learning)
(12).

There are several widely used ensemble methods in which constituents are decision
trees. Tree-based methods create a series of decision rules splitting the predictor space
to predict a target. A decision tree summarizes these rules (11,12). Each branch of the
tree represents a split of the predictor space. Without strong assumptions about the
data, decision trees are very prone to overfitting. Several methods are available to avoid
overfitting and improving decision trees for analytical purposes, with the concurrent cost
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of losing interpretability. Random forests are the most outstanding and useful prediction
tree-based method. The random forests algorithm creates a set of datasets by sampling
randomly with replacement from the original data (also known as bootstrapping) and then
fits a tree for every new sample aggregating all predictions (i.e., bootstrap aggregation or
bagging). This aggregation makes random forests an ensemble method. The creation of
each branch in random forests includes only a random sample of predictors, which prevents
overfitting to features that do not generalize to other samples, thus overcoming individual
decision trees’ tendency to overfitting (32). Like lasso, random forests can also deal with
the dimensionality curse and serve variable selection well. Unlike lasso, random forests’
interpretability is not as stellar because it accommodates highly non-linear relationships
between the predictors and the outcome. Squeglia et al. (33) used random forests to
select features from questionnaires and semi-structured interviews predicting the risk of
developing a SUD. In this work, random forests had the best prediction accuracy compared
to six other machine learning methods. Squeglia et al. is an example of a complex study
being successfully addressed by random forests. Another family of ensemble methods uses
boosting, a technique that trains models sequentially so that each model learns from the
errors made by its predecessor (12,34). Boosting primarily reduces bias and also variance.
In particular, gradient boosting works sequentially feeding each model, for example, a
regression tree, with the residual errors made by the previous one (34). This technique deals
with overfitting through the learning rate in each sequential step. For gradient boosting
with regression trees, the learning rate corresponds to what each tree learns. If the rate is
low, the possibility of overfitting decreases. A large number of sequential models could also
end in overfitting. Therefore, the number of models to adjust sequentially is a parameter to
consider when using gradient boosting. Lo-Ciganic et al. (35) developed a model to predict
opioid overdose among Medicare beneficiaries. These authors used five machine learning
methods and found gradient boosting and deep neural networks (see next section) had a
similar global performance, but gradient boosting presented higher specificity and lower
sensitivity than deep neural networks.

3.6. Artificial Neural Networks

Among the most expressive models, artificial neural networks (also known as neural
networks) process the information from predictor variables through successive layers
stacked on top of each other (36). Each layer transforms the data and the last layer
produces the prediction. During neural network model training, the model predicted
values are compared with actual observations, obtaining a measurement of how near
the prediction was from the observation. An optimization algorithm then carries out the
learning process, adjusting how the data are transformed within each layer to reduce
the error between prediction and observation (36). This whole process runs iteratively
until obtaining the best performance. Neural networks can capture dependencies and
complicated relationships and incorporate many methods to avoid overfitting, but it is
usually hard to understand each predictor variable’s contribution to the outcome. Neural
networks are very flexible. There are several architectures for different types of problems,
with differing: numbers of layers, numbers of layer components (or neurons), ways to
connect neurons, and ways to change the connections’ weight (36). Some of the most
successful architectures are well-established convolutional neural networks (for example,
the VGG family of pre-trained networks for image analysis (37)), generative adversarial
networks, or neural language models (for example, Bert (38) or the GPT family (39)). The
latter three are part of the umbrella of methods often called deep learning; nevertheless,
technical terms for the newest methodologies are continually evolving. Neural networks
have been used in addiction research to identify cocaine-dependent participants using
functional magnetic resonance imaging data (3). In another example, neural networks
helped predict whether patients will become long- or short-term opioid users based on
information available from electronic medical records (1).
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4. Using unsupervised machine learning for clustering and pattern recognition

The task of discovering emerging relationships and groupings within the data without
any predefined target is the domain of unsupervised learning methods. These tools are
usually applied to the preliminary project phases, such as during data exploration, to
understand a problem better.

4.1. Clustering

Clustering techniques aim to group elements in a dataset, so objects within a group
are more similar than those in other groups. For this purpose, it is critical to define
a similarity metric that mirrors the intuitive notion of human-expert-based similarity.
Classical similarities used in clustering are different distances (e.g., Euclidean, cosine)
between vectors representing objects. In this representation, each dimension in the vectors
corresponds to one of the variables or features describing objects. Groups that result from
applying clustering techniques can be non-overlapping (hard clustering) or overlapping
(soft clustering), where each object has a probability of belonging to each cluster. Clustering
can be flat or hierarchical if the algorithm produces a tree-like structure, recursively finding
smaller clusters contained in bigger ones. A domain expert must analyze the groups
obtained to interpret the latent causes governing the grouping (or clustering solution). This
analysis may start at a quantitative characterization of the values of variables in each group,
but it usually requires more insightful interpretation to add value to the technique.

K-means clustering is one of the most common algorithms, an excellent tradeoff
between computational complexity and the resulting solution’s optimality. It has been
used, for instance, to group subjects with SUD with similar psychosocial or clinical features
(40,41). In this method, users manually provide the k parameter for the optimal number of
clusters. Since clustering usually pertains to the projects’ exploratory stage, k tends to be
a guess. Experimenting with different ks is standard practice and recommended to find
satisfactory results. Given k, the k-means algorithm follows two steps iteratively until
partitioning remains unchanged (12). In the first step, each observation is assigned to its
nearest cluster geometric center. In the next step, the geometric center location moves to
the mean of all data points assigned to that cluster. These two steps alternate until finding
an assignment of objects to clusters where objects within a cluster are closest to each other
and most distant to objects outside the cluster. The first location of each cluster center is
random; then, the algorithm follows the learning process until it reaches a state where no
reassignment could result in better optimization. Thus, the result of k-means clustering has
the advantage of being easy to interpret, but a slight difference in k or the location of the
initial centers can produce a different result (12). Another widely used clustering algorithm
is Latent Dirichlet Allocation. It is often used for analyzing natural language datasets,
for example, it has been successfully used to identify Twitter discussions associated with
overdose death rate (42). However, a detailed description of its functioning is beyond the
scope of this review (43).

Clustering techniques also allow detecting anomalies or outliers. If we assume that
cluster centers characterize paradigmatic cases, those in each cluster’s periphery could be
anomalies, and we may subject them to specific inspection.

4.2. Representation Learning

Another family of tools within unsupervised methods generates changes in the feature
space, like collapsing features into more meaningful entities for dimensionality reduction
or embeddings. Within a supervised setting, where the target outcome is well-defined,
variable selection helps reduce dimensionality. In unsupervised settings, the paradigmatic
method for unsupervised dimensionality reduction is principal component analysis (also
called PCA). Principal component analysis assists data visualization or is a preprocessing
step to eliminate noise or reduce a dataset’s size before applying supervised techniques.
Each principal component is a linear combination of every feature in a way that retains
the highest variance (11). Thus, the first component is a new dimension representing the
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most data variability in a single dimension. The second component then represents the
most dataset variability that a dimension can capture, given the first component, and so on.
Principal component analysis results are a set of few uncorrelated principal components
available as an improved feature space for automatic classifiers/regressors or human
analysis (11). Factor analysis is often associated with principal component analysis, but its
characteristics for application to questionnaire design are more desirable as explained by
Lloret-Segura et al. (44) and by Jolliffe (45).

Like principal component analysis, embeddings find a feature space where objects are
represented differently, so that it is more feasible for a learning algorithm to find a model
for a given task. Embeddings are the process of projecting the original space into a different
space, of higher or lower dimension, where separations between classes may be easier to
find, even linear separations in problems that cannot be linearly separated in the original
space. In the context of neural networks, intermediate representations of a network may be
a good representation of objects for related problems, improving the performance of tasks
related to images and text (46–48).

5. Discussion

We have described a broad palette of machine learning tools and how they apply in
the addiction domain. Many more addiction research projects can benefit from enhancing
their current analytical toolbox by resorting to the robust, high-level implementation of
these tools. For over two decades now, open-source software communities have boosted
reliable, robust, and auditable software where the latest developments of machine learning
and applied statistics are readily available for application to addiction research problems
and replicating reference research. These communities regularly welcome new adopters
and have reproducibility, replicability, ethical issues, and fairness as central objectives
(see, for example, The Turing Way (49)) We believe many in addiction research stay away
from machine learning because, often due to its jargon, it appears unrelated to well-
established analytical practices in our field. This review shows how machine learning
can be viewed as a natural instrumentalization of familiar and well-established statistical
concepts. Differences between machine learning and statistics are likely motivated by each
research field’s particular evolution and in which subbranch of applied mathematics (i.e.,
statistics or computer sciences) methods were developed.

Notwithstanding, machine learning is not a field without shortcomings. Most of
the mentioned methods (e.g., neural networks) have many parameters and require large
amounts of data and considerable computational power. Lack of generalization (or over-
fitting) is a recurrent pitfall, and most complex models do not address interpretability.
Nevertheless, interpretability is a growing study area. Some solutions integrate comple-
mentary strategies to complex models that provide explainability for machine learning
decisions.

Another limitation in the current machine learning literature is the lack of consid-
eration to inference and informing variability of results, an area where classical applied
statistics shines. However, addressing these shortcomings is also part of the mainstream
research agenda in machine learning.

Unstructured data sources, such as electronic health records, medical images, or social
media data, make available vast quantities of secondary data for advancing research on
addiction. However, processing these sources requires particular techniques, which lay
beyond the scope of this review. Luckily, high-level software tools can be readily used
off-the-shelf as black-box solutions to obtain representations of images or texts to input
them to standard machine learning processes. Box 2 includes an outline of such areas and
approaches.

This two-part review is a brief introduction to the capabilities and applicability of
machine learning to addiction research. All the presented concepts constitute a research
area full of nuances, potential, and conceptual depth. Readers are encouraged to take
advantage of the many resources cited here and in the second part of this review (8), to
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deepen their understanding of the presented concepts. In this first part, we highlighted
methods and techniques. In its second part (8) a machine learning analysis workflow
and use cases in addiction research are a good starting point for a hands-on approach to
machine learning in addiction research. In conclusion, machine learning encompasses
several useful tools that need to be in the addiction researchers’ toolbox. Some of them are
well-known already, such as logistic regression, yet others will expand the capabilities in
addiction research. We hope this text encourages addiction researchers to consider using
machine learning tools in current and upcoming studies.
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Machine Learning Methods implemented in R and Python

This section is a primer showing a few of many existing open-source software readily
available to apply machine learning methods. It is not intended as a thorough guide. For
further information about R packages and how to use them, visit the rdocumentation.org
site. Helpful tips: start with Google, adding “R” or “Python” to your question; if you still
find nothing you also can upload a question with an example. Try with stackexchange.com
and stackoverflow.com to search existing questions or to ask new ones tagging your
questions with “R” or “Python”. When no “library()” statement is listed for R, the functions
listed are included with R’s initial installation. When functions are listed after an R library,
it refers to some of the main (many times out of many) functions within the library that are
relevant to each analytic technique. In Python, most implementations are found within the
scikit-learn library, with the exception of deep learning models, which may be found in the
Keras or Pytorch packages.

Supervised Methods

Linear Regression

Python: sklearn.linear_model: LinearRegression
R: lm(y x, ...)

Ridge Regression

Python: sklearn.linear_model: Ridge
R: library(glmnet), glmnet(x, y, alpha = 0, ...), cv.glmnet(x[train, ], y[train, ], alpha =

0)

Lasso Regression

Python: sklearn.linear_model: Lasso
R: library(glmnet), glmnet(..., alpha = 1, ...), cv.glmnet()

Polynomial Regression

Python: sklearn.preprocessing: PolynomialFeatures + linear model
R: lm(y poly(...), ...)

Splines

Python: scipy.interpolate: UnivariateSpline
R: library(splines), lm(y bs(...), ...)orlm(y ns(...), ...)

Smoothing Splines

Python: statsmodels.gam.api: GLMGam
R: library(gam), gam(y ...)orlibrary(mgcv)

Generative Additive Models

Python: statsmodels.gam.api: GLMGam
R: library(gam), gam(y . . . )orlibrary(mgcv)

Decision Trees/Random Forests

Python: sklearn.tree: DecisionTreeRegressor sklearn.ensemble: RandomForestRe-
gressor sklearn.tree: DecisionTreeClassifier sklearn.ensemble: RandomForest-
Classifier

R: library(randomForest), randomForest(y x, ...)

Gradient Boosting
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Python: XGBoost
R: library(xgboost), xgboost(...)

K-nn

Python: sklearn.neighbors: KNeighborsRegressor
R: library(class), knn(train.x, test.x, train.y, k = ...)

Logistic Regression

Python: sklearn.linear_model: LogisticRegression
R: glm(y x, ..., f amily = binomial)

Naive Bayes Algorithms

Python: MultinomialNB, GaussianNB
R: library(naivebayes), naivebayes(y x, ...)

Support Vector Machines

Python: SVC
R: library(e1071), svm(y x, ...)

Artificial Neural Networks

Python: pytorch, keras
R: library(keras), various functions within the library

Unsupervised Methods

k-means

Python: sklearn.cluster: KMeans
R: kmeans(x.matrix, centers, nstart = ..., ...)

Principal Component Analysis

Python: sklearn.decomposition: PCA
R: library(mixOmics), pca(x.matrix, ...)

Latent Dirichlet Allocation

Python: sklearn.decomposition: LatentDirichletAllocation
R: R = library(topicmodels), LDA(dataset, k = ..., ...)
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Box 1: Machine learning explained through its keywords

Learning - Broadly, learning involves acquiring general concepts from particular instances.
An algorithm learns when it improves its performance at solving a given task. To
learn, an algorithm extracts information from the experience coming through ex-
amples (e.g., outcomes and with their characteristics as organized in a dataset). An
algorithm solves a given task using the information extracted and obtains a measure
of its performance at that moment of the learning process. An algorithm captures this
learning in parameters or weights of a model of the data from which the information
is extracted. Frequently, this procedure occurs iteratively, in alternative steps of
measuring the performance at each step and adjusting the parameters.

Algorithm - The function or computational process which allows to learn from the data.
It is often a synonym for technique or method. For instance: “We applied three
machine learning algorithms: random forest, deep neural networks, and a support
vector machine”.

Training - This is the process through which the algorithm learns from data. As a result,
the parameters or weights are calculated and a model is fitted.

Parameters, coefficients, weights - They capture what the algorithm learned from the
data. Finding the weights that reduce error the most is the result of the learning
process.

Model - A model is a function that provides a variable as a combination of the describing
variables of an entity (e.g., object, event). It is the result of a machine learning process,
applying a particular algorithm to a specific dataset.

Dependent variable, response variable, or target - It is the variable of interest, the out-
come, corresponds to what one wants to predict or classify. It is typically denoted by
the letter y. For example, y could be that a participant has a SUD.

Independent variable, predictor variable, feature, attribute - Variable(s) used by the al-
gorithm to predict or classify. Each instance to be processed is characterized or
represented by these variables. These attributes are typically denoted using the letter
x, with numbered subscripts when there is more than one attribute. (i.e., an instance
with two attributes would have x1 and x2 as attributes). For instance: when we seek
to predict the presence or absence of a SUD in a participant (y), the attributes gender
(x1) and age (x2) are relevant.

Model performance - It is a measurement of how well a model solves the task of interest,
for example, how well the model can classify participants with and without SUD. Per-
formance can be measured with several metrics that may also be useful at comparing
models.

Bias-variance trade-off - Variance refers to the sensitivity of a model to small data changes.
In a high variance scenario, model performance changes a lot with different data,
even if the data come from the same population. Bias is a systematic error, which is
the result of solving a complex real-life problem with a simpler model. There is a
trade-off between variance and bias. More flexible models have higher variance and
lower bias than simpler ones, and vice versa. This trade-off is the core of most of the
limitations of machine learning techniques.

Overfitting - This is an undesired phenomenon produced by a model, when it follows
the errors, or noise in the data (rather than the signal or information in the data),
too closely. Overfitting occurs when a fitted model follows every detail of a dataset,
the algorithm learns anecdotal information building a model with an excellent per-
formance on that dataset but with poor performance on unseen data. Overfitting is
associated with high model variance.

Inference - Models can be used for predicting and understanding dependent variables.
When seeking to understand how predictor variables are associated with the outcome,
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the magnitude of some model parameters can be assessed through statistical inference
(also known as statistical hypothesis testing).

Clustering, cluster analysis - It is a set of learning methods aimed to make groups with
observations that share similar characteristics. These techniques find feature patterns,
which are given by a set of related values of the variables analyzed. These patterns
generate clusters that group similar observations.

Ensemble methods - These are tools that combine several techniques to improve the
final model performance. Ensembles often outperform each method separately, can
capture more complex characteristics and may decrease overfitting. Examples include
random forests, bagging, and gradient boosting.

Regularization - It is a technique used to prevent overfitting by imposing additional con-
straints to a model, usually in the presence of a relatively high number of predictors,
that leads to some type of parameter shrinkage approach to fit a model. Lasso and
ridge regression are two methods that apply regularization.

Cross-validation - It is a group of techniques that split the training dataset, leaving out
a subset to evaluate the model fitted using the data left out during training. Cross-
validation implements these steps (splitting, leaving out, and evaluating in the
left-out data) repeatedly, allowing us to fit the model and validate it using different
subsets. Considering the need of evaluating the model with unseen observations,
unlike simpler techniques to split datasets, cross-validation evaluates models by
maximizing the use of the whole dataset. There are several techniques, such as k-fold
and or leave-one-out cross-validation.
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Box 2: Specific domains within machine learning

Image analysis involves specific challenges besides proficient domain knowledge, such
as mastery of highly specialized techniques, the use of specific software for pre-
processing, post-processing and the modeling itself, the high dimensionality problem
(hundreds of thousands of features per image), and having to consider time in the
case of functional imaging. Mete et al (28) analyzed 162 neuroimages from two groups
(participants with cocaine use disorder and participants without it). Considering that
each image had 517,845 voxels (a volumetric pixel, the minimal unit in a 3D image),
the authors used several strategies towards dimensionality reduction including both
neuroanatomic considerations and machine learning methods. After obtaining high
classification performance, relevant brain regions that differed between both groups
were explored to interpret their medical significance.

Natural language processing frameworks can process individuals’ health records, includ-
ing free text, and detect relevant categories from thousands of diagnoses and proce-
dures (50). Natural language processing is also used for data collected from social
media such as the analysis of Twitter messages and their association with overdose
death rate studied by Graves et al (42). Natural language processing also involves
very specific techniques and complex pre-processing.

Time series is another area with extensive specific techniques often used in high-level
solutions to discover relevant, paradigmatic, or anomalous patterns in data series
over time. For example, time series analysis helped forecast alcohol consumption
relapses (51).

In some cases, a problem that evolves can be more adequately modeled as a reinforcement
learning problem if there are many observable states but only some of them can be
interpreted, such as cigarette smoking or cocaine use disorder (52,53). The main
difficulty of using reinforcement learning is the complexity of the targeted model.
Defining a model to be learned requires a deep analysis of the problem and experience
in formalizing problems into the reinforcement learning analytical framework.


