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Abstract
Self-driving vehicles have the potential to revolutionize urban mobility by providing sustainable, safe, and convenient 
transportability. In recent years several companies have identified automation as their major area of research and also are 
investing a huge amount of their financial resources in automating vehicles. This is the period of time where autonomous 
vehicles are very close to being capable of transporting us to destinations without the aid of drivers in the very near future. 
In the current generation, the main focus is to make vehicles more automated to provide a better driving experience. These 
vehicles are designed to drive without or with little human assistance by sensing it’s the environment. This can be achieved 
by a combination of sensors and processing the data with the help of computer vision technology and machine learning. 
The vehicle autonomy needs to be conducted with care, keeping in mind the challenges that can be faced during the process. 
Recognizing the traffic signals, understanding the signs, identifying the lane markings are some of the basic functions that it 
needs to perform. After gathering all this information, the next task is to understand the predefined protocols and follow them 
without any fault. This problem can be solved stepwise using some functions from image processing and computer vision 
technology such as Haar transform, perspective mapping, perspective transformation, canny edge detection, and histogram 
equalization. This solution is further enhanced by including machine learning, which improves performance with experience, 
making it more reliable. It should be noted that, although the vehicles promoted by the companies ensure 80% reliability, we 
are not yet ready to completely adapt to the idea of automated vehicles. This paper hence focuses on the negative of current 
ideology and makes it reliable enough to pave a way for its immediate implementation. In this paper, the authors have used 
a microcontroller and a microprocessor, to Arduino uno is used as a microcontroller and Raspberry pi B+ model is used as 
the microprocessor. To detect the lanes the authors have used image processing using a library called OpenCV. For detect-
ing the traffic signs the authors have used supervised machine learning technique, to capture the images authors have used 
raspberry pi version 2 cam, using cascade training to classify the positive images from the negative images.
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Introduction

A recent survey says that nearly 1.25 million deaths are 
caused by road crashes every year, that is an average of 3287 
deaths per day. In addition, around 20–50 million people get 

injured or disabled in accidents. Road accidents are ranked 
9th for being the cause of death and it is responsible for 2.2% 
of the deaths around the globe. Safety has become a major 
concern these days. Self-driving vehicles could help in 
reducing this number. This technology could help the indi-
viduals who are unable to drive by themselves, such as the 
elderly, disabled, and the ones who are phobiatic to driving. 
Currently, several technological firms and universities have 
started investing immense technical and financial resources 
in the field of autonomous vehicles because of their high 
growth scope. This concept of self-driving vehicles is on the 
edge of becoming the mainstream, provided it overcomes the 
practical challenges, along with economic, social and legal 
acceptance. In this project, we have made an attempt to real-
ise this ideology in a very simple and cost-effective way, by 
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exploring the concepts and effects of some basic function-
alities in machine learning, computer vision and other such 
fields. The final vision is to ideally accomplish all the neces-
sary tasks that a basic self-driving vehicle needs to perform. 
Ideally here refers to a methodology that is uncomplicated to 
understand, easy to modify, and open to improvisation. The 
report details on how computer vision technology along with 
some image processing functions further dealt with machine 
learning help to study the environment of the vehicle and 
enables the vehicle to find out a path and travel through it in 
the prescribed way.

Literature Survey

The process of automation of vehicles is carried out by 
various methods like sensor fusion, computer vision, path 
planning, actuator, deep learning, and localization [1]. 
Computer vision deals with the process of making com-
puters acquire a high level of understanding from digital 
images [2]. Sensory fusion deals with the process of com-
bining sensors and analyzing the obtained sensory data 
as a combined result of two or more sensors that would 
yield a better understanding of the environment of obser-
vation [3]. Deep learning can be seen as a wider family 
of machine learning, that includes various types of data 
representation unlike task-specific algorithms [4, 5]. Path 
planning is a primitive step that identifies the path where 
the vehicle is allowed to pass through. An efficient path 
planning can be done by plotting the shortest path between 
two points [6]. An actuator helps in moving or control-
ling the vehicle [7]. Navigation is the vehicle’s capability 
to determine the position of the vehicle within its frame 
of reference and plan the most effective path towards the 
destination. To navigate in its environment, the vehicle 
requires a representation of the plot, i.e. a map showing 
the environment and the capability to interpret its repre-
sentation. Edge detection comprises a set of mathematical 
equations that identify the points within a digital image 
where there is a rapid change or where the image bright-
ness has discontinuities [8]. Since the usual color of the 
road is black, which is the least intensity color and that of 
the lane markings is either white or yellow both of which 
falls under the region of high-intensity colors, it is easier 
to differentiate the two regions, thus making the task of 
identifying the region of interest easier. The points where 
the image brightness changes sharply are grouped together 
and stored as a set of curved line segments [9, 10]. These 
line segments compose the edges of the region of inter-
est [11]. Edge detection is a fundamental tool in image 
processing, machine learning, and computer vision, after 
which the functions are performed on the image [12]. The 
process of detection is done in three simple steps since 

all the traffic signals are designed in a common way to be 
understood easily by everyone. Since all three colors (red, 
yellow, and green) have high contrast ratios, this feature 
itself is used to separate the traffic signal from the rest of 
the objects in the image frame [13]. This separates the 
region of interest from the rest of the surroundings. Then 
to identify the colors individually, their RGB pixel values 
are considered and then the colors are classified [14]. For 
more precise performance, this process is carried out in 
six different steps. Input frame from the video, color fil-
tering, edge detection, contour detection, detect bounding 
rectangle of contours, and then save candidate images for 
recognition. The data is then sent to the processor which 
then performs data set exploration and the required action 
is taken [15]. The process of detection is followed by the 
process of recognition, which involves recognizing vari-
ous regions of interest on which the functions need to be 
performed. The first step in recognition is data set explora-
tion. The data set used for training is GTSRB. Approxi-
mately 1000 images are taken for each class from different 
perspectives and different sizes. Twenty percentage of the 
training data set is stored for the validation process, hence 
it helps to increase the data set size artificially by a method 
called the augmentation process. Random images are cho-
sen from the existing images and random rotations and 
translations are performed on the [16]. The transformed 
set of pixels is then added to the original set of pixels. 
The next step is training and model performance. Sto-
chastic gradient descent is used as the optimizer. Instead 
of stochastic gradient descent other optimizers can also 
be used to increase the performance, since the work not 
only focuses on the optimizer. Another important perfor-
mance indicator is batch size tuning because small batch 
sizes results in slow convergence whereas large batch 
sizes cause memory problems. Usually, middle batch sizes 
are preferred. To conclude, the paper includes two main 
phases: detection and recognition [17]. The first sign is 
detected from the real-time video stream using a CNN 
model. The detected sign is classified with an accuracy of 
97.42%. However, when the video obtained by the RC Car 
is streamed online, the accuracy rate instantly decreases 
to 87.36%. The reason behind this rapid fall is because of 
the low sensitivity of the color filtering method used to 
the lighting and other objects. From the results, the classic 
image processing methods are eliminated and recurrent 
neural networks are used for detection as well as recogni-
tion phases. Hence, the result consists of each object in 
the whole picture [18]. By this, the decrease in the perfor-
mance can be contradicted. The theory of neural networks, 
autonomous vehicles, and the process of how a prototype 
with a camera as its only input can be used to design, 
test, and evaluate the algorithm capabilities [19, 20]. The 
ANN is an efficient algorithm that helps in recognizing 
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the patterns within an image with the help of a training set 
that nearly contains 2000 images. The result thus obtained 
is 96% accurate. The main convenience of this project is 
that the design has successfully accomplished the tasks 
to be performed just by using one camera of average cost 
for navigation, which might as well be used for obstacle 
avoidance. In the end, the project concludes that the preci-
sion and accuracy of the output is directly proportional to 
the number of input images fed to the self-learning sys-
tem [21]. The approach used here successfully meets all 
the requirements needed for autonomous navigation. In 
fact, the neural network is here used as the exact means 
to operate and control an autonomous vehicle in order 
to provide the user with a high accuracy rate reaching 
96%. The perspectives for continuation of the work are 
in improvising the learning algorithm and enhancing the 
process of the testing the experiments. One of the key 
tasks is on-road obstacle detection and classification in 
the region ahead of the self-driving vehicles [22]. Since 
the key function of vehicle automation involves vehicle 
tracking or locating and associating vehicles in the frames, 
vehicle detection and classification becomes necessary. 
Due to the cost-effectiveness of vision-based approaches, 
they are given a higher priority over other approaches 
available for this task. This system uses a deep learning 
system accompanied by the convolutional region-based 
neural network. PASCAL VOC image dataset is used to 
train these dataset. The algorithm is advanced to the extent 
that it automatically identifies and classifies the obstacles 
like animals, pedestrians, and other vehicles with a time-
dependent increased performance [23]. Using Titan X 
GPU to implement the system can help us achieve a frame 
rate of 10 frames per second or above during processing 
for an image frame of VGA resolution. The high frame rate 
thus obtained simplifies demonstration to an extent that it 
then becomes suitable for driving automated vehicles even 
on highways. During the performance testing, the results 
showed invariant performance under different textures of 
road and various climatic conditions that make the design 
well reliable for Indian rural roads as well.

Methodology

Slave Setup

As raspberry pi cannot handle both image processing and 
machine learning operations at the same time, a separate 
controller is used to control the motors of the bot. The 
motors are driven by using a L298N H bridge motor driver. 
Enable pins are connected to the PWM-enabled pins to con-
trol the speed of the motor. The powers to the positive and 

negative terminals of the motor are handled by the digi-
tal pins of the microcontroller. Figure 1 shows the setup 
required.

OpenCV Using C

We have used raspberry pi as our microprocessor. To per-
form image processing on the objects we have used an open 
platform called OpenCV. There are other platforms like ten-
sor flow but as OpenCV provides smooth performance we 
have decided to use OpenCV. We have used pi cam 2 to 
capture video. We have used this camera because we are per-
forming processing with an image resolution of 480 × 360. 
Pi cam perfectly supports this resolution and is cheaper than 
other cams. After capturing the required frame we first con-
vert the image into signature, before that we have to change 
the raspberry pi default BGR format of the image to RGB 
format. To detect the lanes we have to apply a perspective 
wrap on the image. To analyze an image 5 frames of ref-
erences are needed, object co-ordinate frame, word coor-
dinate frame, camera coordinate frame, image coordinate 
frame, image coordinate frame, and pixel coordinate frame. 
By applying transformations to all these 5 frames we get a 
perceptive wrap of an image. To apply perspective wrap first 
we have to create a region of interest around the working 
region. Then a perspective transform is taken over the region 
to get a bird’s eye view of the image. A fresh frame of the 
same image is taken and a canny edge detection algorithm 

Fig. 1  Slave setup
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is applied to it. Now the wrapped image is added with this 
frame and the lanes can be detected accurately. The actual 
distance of the lanes are found out by dividing the region of 
interest equally and finding the maximum intensity levels 
of each element. Again the array is divided into two parts to 
detect the left and right part of the lanes. The array elements 
having the max intensity corresponds to the lane position. 
After finding the distance of the lanes the midpoint is taken. 
Taking the center of the camera frame as then we have used 
raspberry pi as our microprocessor. To perform image pro-
cessing on the objects we have used an open platform called 
OpenCV.

There are many other platforms for image processing we 
have used open CV as it is a open source platform. We have 
used pi cam 2 to capture video. We have used this camera 
because we are performing processing with image resolu-
tion of 480 × 360. Pi cam perfectly supports this resolution 
and is cheaper than other cams. After capturing the required 
frame we first convert the image into signature, before that 
we have to change the raspberry pi default BGR format of 
the image to RGB format. To detect the lanes we have to 
apply a perspective wrap on the image.

To apply perspective wrap first we have to create a region 
of interest around the working region. Then a perspective 
transform is taken over the region to get a bird’s eye view 
of the image. A fresh frame of the same image is taken and 
canny edge detection algorithm is applied to it. Let f(x, y) 
denote the input image and G(x, y) denote the Gaussian 
function. By convolving G and f we for a smoothed image, 
which is given by fs. After this it is followed up by calcu-
lating the gradient magnitude and direction. The gradient 
magnitude is computed at every point and direction to esti-
mate the edge strength and direction at every point, which 
is called edge gradient.

The equations of the process involved in canny edge 
detection are from Eqs. (1–7) Thresholding of the image is 
done and is added with canny edge detected output. Thresh-
olding is done to extract or enhance the image. To extract an 
object from the image one way is to separate the object and 
background by using a threshold. At any point (x, y) in an 
image f(x, y) > T is called an object point, otherwise called 
as a background point. Equation (8) gives the mathematical 
equation of the process. As our image is a grayscale image 
we set T = 0.5. Now the wrapped image is added with this 
frame and the lanes can be detected accurately. The actual 
distance of the lanes is found out by diving the region of 
interest equally and finding the maximum intensity levels 
of each element. Again the array is divided into two parts to 
detect the left and right part of the lanes. The array elements 
having the max intensity corresponds to the lane position. 
After finding the distance of the lanes the midpoint is taken. 
Taking the center of the camera frame as a reference the 
bot has to adjust its position. If the value of the distance is 

negative then the bot has to move left. The magnitude of the 
turn depends on the distance from center-lane.

Master/Slave Communication

Here parallel communication is setup between the microcon-
troller and raspberry pi using GPIO pins of raspberry pi and 
four digital pins of microcontroller. Conditions are applied 
for different distances between the frame center and the lane 
center. Depending on the conditions the bot is moved left or 
right towards the frame center (Figs. 2, 3).

Machine Learning

To detect the traffic signals, obstacles, and traffic signs 
labelled machine learning is used, i.e. the data set used 
by the authors will be labelled, these labelled images are 
compared with the real-time images taken by the cam. To 
classify the images we need a machine learning model. To 
implement a machine learning model, we require a data set 
which sufficient enough for the model to classify between 
the images. The authors take 400 samples of the object to 
be detected these are called the positive images and then 
300 negative images are taken, that is those areas which do 
not belong to the object to be detected. Histogram equaliza-
tion is applied to all the images after converting the RGB 
image to a grayscaled image. If we consider values of con-
tinuous intensity and if r is the intensities of the image to 
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−

(
x2+y2

2�2

)

,

(2)fs = G(x, y) ⊗ f (x, y),

(3)Gx =
�fs

�x
,

(4)Gy =
�fs

�y
,

(5)Edge Gradient (G) =

√
G2

x
+ G2

y
,

(6)Angle (�) = tan−1
(
Gy

Gx

)

,

(7)Edge Gradient = ||Gx
|| +

||
|
Gy

||
|
,

(8)t(x, y) =

{
1, if f (x, y) > 0.5

0, if f (x, y) ≤ 0.5
.
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be processed, we focus attention on intensity mappings of 
the form s = T(r). The purpose of using histogram equaliza-
tion is to uniformly distribute gray value, by making the 
probability distribution function the image intensity uni-
form. By creating a info. file of the images we store the 
exact location of the image and also the number of objects 
in each image. The info. file is created by using the OpenCV 
integrated annotation tool. By using these images a training 
system is developed to recognize the object. This training 
method involves cascading and then a XML file format of 
the learned method is created. This file has to be uploaded 
to the program to apply the remaining operations. After cre-
ating the info. file cascade training is done on the image 

using opencv_traincascade. For given an training example, 
(x1, y1)…(xn, yn), where yi = 0, 1 respectively, the cascade 
transform initializes the weights for yi respectively. For 
training examples from 0 − N, the transform normalizes the 
weights, so that the weights are of the form of probability 
distribution. For each feature, we train the classifier which 
is restricted to use a single feature, the errors are evaluated 
and classifier with the lowest error is taken and the weights 
are updated. Finally a classifier strong enough to classify 
between is build, which is given by Eqs. (9–11). Where ht is 
a classifier, where alpha and beta are used for updation of the 
weights. These values are chosen randomly. The best results 
of cascade classifier will consist of 38 stages. To train the 

Fig. 2  Master–slave communi-
cation setup

Fig. 3  a Positive image. b 
Negative image
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detector of image size 240 × 240 a total of 30 min was taken. 
After detecting the image, the next step is to stop before the 
sign, for this a distance should be known from the bot to the 
detected sign. The authors have used Haar cascade transfor-
mation to implement the model. To find the distance we use 
linear equations. A linear equation for eg: y = mx + c, where 
x is a weight of the equation. This weight and the intercept 
are found manually. After getting the distance from the sign 
after the sign is detected, a threshold is set to stop the bot 
when the distance is reached. The whole working flow of the 
system is shown in Fig. 4.

where, update weights is given by:

(9)h(x) =

{

1

N∑

t=1

�t ht(x) ≥
1

2

N∑

t=1

�t,

(10)Where, �t = log
1

�t
,

(11)wt+1,i = wt,i�
1−ei
t

Results and Discussion

Results obtained from this paper are as follows. The first 
result is lane detection. From Fig. 5 it has detected the lane 
and the lane center is at a distance of − 18 from the frame 
center which indicates us to take a left turn and in Fig. 6 
it is giving a value zero, which is a condition for forward 
direction.

Next part of our paper was to detect the signs in sides of 
the roads, we have taken 500 negative images of the stop 

Fig. 4  Work flow of the bot

Fig. 5  Lane detection center is − 18 from the frame center
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sign surroundings and 60 positive images of the stop sign. 
By applying Harr cascade transform we have trained our 
system to detect the stop sign. From Fig. 7 we have detected 
the sign by marking it with a rectangular box.

From the test results the efficiency of detecting the lane in 
dark environment is very low. But during sufficient bright-
ness around it was able to distinguish between the sign and 
the surroundings properly. The efficiency of detection can be 
improved by using good cam’s light night vision camera’s of 
raspberry pi is available. During the motor test the bot was 
able to move in the centre with a total efficiency of 75%. 
Due to the lower frame rates of capture and low processing 
speed of our microprocessor the efficiency was reduced to 
75%. If we use a processor with RAM of 4 GB the data pro-
cessing and frame rates can be increased i.e. increasing the 
efficiency. Iterations were performed for different samples 
and number of stages, and evaluation metrics like accuracy, 
precision, and recall of detection of the traffic signals where 
calculated, Table 1 depicts the results given for different 
video samples. Video sample 4 was taken in indoor condi-
tions and all the other samples from Videos 1–3 were taken 
from outdoor. In each video sample, the signs were shown 
to the bot 12 times. The formula for calculating is given in 
Eqs. (12–14) from the confusion metric. Our best results 
were from a sample size of 400:300 positive and negative 
samples respectively (Fig. 8).

(12)Accuracy =
TP + TN

TP + TN + FP + FN
,

(13)Recall =
TP

TP + FN
,

  

Conclusion

The objective of the proposed work was to come up with a 
cost-effective and a very efficient automatic driving car, with 
a learning algorithm that is easy to understand and further 
can be improvised. Our bot was successful in following the 
straight path when the distance measured was zero, it was 
able to detect the stop sign successfully in the outdoor envi-
ronment. But we found that there was a delay in the com-
munication between the raspberry pi and the Arduino. This 
was because of the 1 GB RAM of raspberry pi, which was 
not enough to perform image processing, machine learn-
ing and also send signals to the Arduino board for motor 
control simultaneously. The visual results indicated that our 
bot performed to the expectations. To get more smooth per-
formance, the solution is to r use a 4 GB RAM processor. 
As the machine learning technique we used required many 

(14)Precision =
TP

TP + FP

Fig. 6  Lane detection with distance value 0

Fig. 7  Stop sign detection
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samples of the picture predefined for training. This makes 
the process semi-autonomous, so we will have to figure out 
some algorithm which will learn by itself without any prede-
fined label for each subject. The camera which we used was 
not high-end, so as per the evaluation from Table 1 it clearly 
was not able to detect the lanes in the indoor environment. 
We have to change the setup when we shift from an outdoor 
environment to indoor or vice-versa.
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