
Vol.:(0123456789)

SN Computer Science (2021) 2:251
https://doi.org/10.1007/s42979-021-00640-6

SN Computer Science

ORIGINAL RESEARCH

Autonomous Bot Using Machine Learning and Computer Vision

Thejas Karkera1 · Chandra Singh1

Received: 19 December 2020 / Accepted: 8 April 2021 / Published online: 30 April 2021
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021

Abstract
Self-driving vehicles have the potential to revolutionize urban mobility by providing sustainable, safe, and convenient
transportability. In recent years several companies have identified automation as their major area of research and also are
investing a huge amount of their financial resources in automating vehicles. This is the period of time where autonomous
vehicles are very close to being capable of transporting us to destinations without the aid of drivers in the very near future.
In the current generation, the main focus is to make vehicles more automated to provide a better driving experience. These
vehicles are designed to drive without or with little human assistance by sensing it’s the environment. This can be achieved
by a combination of sensors and processing the data with the help of computer vision technology and machine learning.
The vehicle autonomy needs to be conducted with care, keeping in mind the challenges that can be faced during the process.
Recognizing the traffic signals, understanding the signs, identifying the lane markings are some of the basic functions that it
needs to perform. After gathering all this information, the next task is to understand the predefined protocols and follow them
without any fault. This problem can be solved stepwise using some functions from image processing and computer vision
technology such as Haar transform, perspective mapping, perspective transformation, canny edge detection, and histogram
equalization. This solution is further enhanced by including machine learning, which improves performance with experience,
making it more reliable. It should be noted that, although the vehicles promoted by the companies ensure 80% reliability, we
are not yet ready to completely adapt to the idea of automated vehicles. This paper hence focuses on the negative of current
ideology and makes it reliable enough to pave a way for its immediate implementation. In this paper, the authors have used
a microcontroller and a microprocessor, to Arduino uno is used as a microcontroller and Raspberry pi B+ model is used as
the microprocessor. To detect the lanes the authors have used image processing using a library called OpenCV. For detect-
ing the traffic signs the authors have used supervised machine learning technique, to capture the images authors have used
raspberry pi version 2 cam, using cascade training to classify the positive images from the negative images.

Keywords Raspberry Pi · Haar transform · Self-driving vehicles

Introduction

A recent survey says that nearly 1.25 million deaths are
caused by road crashes every year, that is an average of 3287
deaths per day. In addition, around 20–50 million people get

injured or disabled in accidents. Road accidents are ranked
9th for being the cause of death and it is responsible for 2.2%
of the deaths around the globe. Safety has become a major
concern these days. Self-driving vehicles could help in
reducing this number. This technology could help the indi-
viduals who are unable to drive by themselves, such as the
elderly, disabled, and the ones who are phobiatic to driving.
Currently, several technological firms and universities have
started investing immense technical and financial resources
in the field of autonomous vehicles because of their high
growth scope. This concept of self-driving vehicles is on the
edge of becoming the mainstream, provided it overcomes the
practical challenges, along with economic, social and legal
acceptance. In this project, we have made an attempt to real-
ise this ideology in a very simple and cost-effective way, by

This article is part of the topical collection “Data Science and
Communication” guest edited by Kamesh Namudri, Naveen
Chilamkurti, Sushma S J and S. Padmashree.

 * Thejas Karkera
 thejkrk7@gmail.com

 Chandra Singh
 chandrasingh146@gmail.com

1 Department of ECE, Sahyadri College of Engineering
and Management, Mangalore, India

Maadhav Kothuri: Automated processing is quicker
and often more accurate than manual processing. Also
frees up employees to do other things that require a
greater human touch

Maadhav Kothuri: Through CV and machine learning

Maadhav Kothuri: Need to do these to drive safely and
acceptably

Maadhav Kothuri: Type of wavelet transformation
where the wavelets are compressed or stretched

Maadhav Kothuri: Open source computer vision library;
try to use this if doing something with computer
vision!!

Maadhav Kothuri: Detectable end result (yes/no) with
reward function

 SN Computer Science (2021) 2:251251 Page 2 of 9

SN Computer Science

exploring the concepts and effects of some basic function-
alities in machine learning, computer vision and other such
fields. The final vision is to ideally accomplish all the neces-
sary tasks that a basic self-driving vehicle needs to perform.
Ideally here refers to a methodology that is uncomplicated to
understand, easy to modify, and open to improvisation. The
report details on how computer vision technology along with
some image processing functions further dealt with machine
learning help to study the environment of the vehicle and
enables the vehicle to find out a path and travel through it in
the prescribed way.

Literature Survey

The process of automation of vehicles is carried out by
various methods like sensor fusion, computer vision, path
planning, actuator, deep learning, and localization [1].
Computer vision deals with the process of making com-
puters acquire a high level of understanding from digital
images [2]. Sensory fusion deals with the process of com-
bining sensors and analyzing the obtained sensory data
as a combined result of two or more sensors that would
yield a better understanding of the environment of obser-
vation [3]. Deep learning can be seen as a wider family
of machine learning, that includes various types of data
representation unlike task-specific algorithms [4, 5]. Path
planning is a primitive step that identifies the path where
the vehicle is allowed to pass through. An efficient path
planning can be done by plotting the shortest path between
two points [6]. An actuator helps in moving or control-
ling the vehicle [7]. Navigation is the vehicle’s capability
to determine the position of the vehicle within its frame
of reference and plan the most effective path towards the
destination. To navigate in its environment, the vehicle
requires a representation of the plot, i.e. a map showing
the environment and the capability to interpret its repre-
sentation. Edge detection comprises a set of mathematical
equations that identify the points within a digital image
where there is a rapid change or where the image bright-
ness has discontinuities [8]. Since the usual color of the
road is black, which is the least intensity color and that of
the lane markings is either white or yellow both of which
falls under the region of high-intensity colors, it is easier
to differentiate the two regions, thus making the task of
identifying the region of interest easier. The points where
the image brightness changes sharply are grouped together
and stored as a set of curved line segments [9, 10]. These
line segments compose the edges of the region of inter-
est [11]. Edge detection is a fundamental tool in image
processing, machine learning, and computer vision, after
which the functions are performed on the image [12]. The
process of detection is done in three simple steps since

all the traffic signals are designed in a common way to be
understood easily by everyone. Since all three colors (red,
yellow, and green) have high contrast ratios, this feature
itself is used to separate the traffic signal from the rest of
the objects in the image frame [13]. This separates the
region of interest from the rest of the surroundings. Then
to identify the colors individually, their RGB pixel values
are considered and then the colors are classified [14]. For
more precise performance, this process is carried out in
six different steps. Input frame from the video, color fil-
tering, edge detection, contour detection, detect bounding
rectangle of contours, and then save candidate images for
recognition. The data is then sent to the processor which
then performs data set exploration and the required action
is taken [15]. The process of detection is followed by the
process of recognition, which involves recognizing vari-
ous regions of interest on which the functions need to be
performed. The first step in recognition is data set explora-
tion. The data set used for training is GTSRB. Approxi-
mately 1000 images are taken for each class from different
perspectives and different sizes. Twenty percentage of the
training data set is stored for the validation process, hence
it helps to increase the data set size artificially by a method
called the augmentation process. Random images are cho-
sen from the existing images and random rotations and
translations are performed on the [16]. The transformed
set of pixels is then added to the original set of pixels.
The next step is training and model performance. Sto-
chastic gradient descent is used as the optimizer. Instead
of stochastic gradient descent other optimizers can also
be used to increase the performance, since the work not
only focuses on the optimizer. Another important perfor-
mance indicator is batch size tuning because small batch
sizes results in slow convergence whereas large batch
sizes cause memory problems. Usually, middle batch sizes
are preferred. To conclude, the paper includes two main
phases: detection and recognition [17]. The first sign is
detected from the real-time video stream using a CNN
model. The detected sign is classified with an accuracy of
97.42%. However, when the video obtained by the RC Car
is streamed online, the accuracy rate instantly decreases
to 87.36%. The reason behind this rapid fall is because of
the low sensitivity of the color filtering method used to
the lighting and other objects. From the results, the classic
image processing methods are eliminated and recurrent
neural networks are used for detection as well as recogni-
tion phases. Hence, the result consists of each object in
the whole picture [18]. By this, the decrease in the perfor-
mance can be contradicted. The theory of neural networks,
autonomous vehicles, and the process of how a prototype
with a camera as its only input can be used to design,
test, and evaluate the algorithm capabilities [19, 20]. The
ANN is an efficient algorithm that helps in recognizing

Maadhav Kothuri: Could easily be applied to multiple
vehicle systems

Maadhav Kothuri: Doesn't try to analyze everything all
at once... instead identifies potential objects and sent
over to processor for analysis. This helps to keep the
algorithm more simple and less fallible.

Maadhav Kothuri: Basically the eyes, help computer
see into the outside world and process what it sees

Maadhav Kothuri: To then feed into the cv system

Maadhav Kothuri: Allows images to be repurposed as
"new images" for the system to analyze, making less
data go for more

Maadhav Kothuri: Hardware

Maadhav Kothuri: Running batch processes... too large
of a batch size overloads the processor

Maadhav Kothuri: Find borders using math (again
shows how math is an integral part of machine
learning algorithms)

Maadhav Kothuri: Probably be locations where the car
couldn't go

Maadhav Kothuri: Since the system depends largely on
color, the video quality is very important for accuracy.
Means that in order to implement this, high quality
cameras and possible artificial lighting may be needed.

SN Computer Science (2021) 2:251 Page 3 of 9 251

SN Computer Science

the patterns within an image with the help of a training set
that nearly contains 2000 images. The result thus obtained
is 96% accurate. The main convenience of this project is
that the design has successfully accomplished the tasks
to be performed just by using one camera of average cost
for navigation, which might as well be used for obstacle
avoidance. In the end, the project concludes that the preci-
sion and accuracy of the output is directly proportional to
the number of input images fed to the self-learning sys-
tem [21]. The approach used here successfully meets all
the requirements needed for autonomous navigation. In
fact, the neural network is here used as the exact means
to operate and control an autonomous vehicle in order
to provide the user with a high accuracy rate reaching
96%. The perspectives for continuation of the work are
in improvising the learning algorithm and enhancing the
process of the testing the experiments. One of the key
tasks is on-road obstacle detection and classification in
the region ahead of the self-driving vehicles [22]. Since
the key function of vehicle automation involves vehicle
tracking or locating and associating vehicles in the frames,
vehicle detection and classification becomes necessary.
Due to the cost-effectiveness of vision-based approaches,
they are given a higher priority over other approaches
available for this task. This system uses a deep learning
system accompanied by the convolutional region-based
neural network. PASCAL VOC image dataset is used to
train these dataset. The algorithm is advanced to the extent
that it automatically identifies and classifies the obstacles
like animals, pedestrians, and other vehicles with a time-
dependent increased performance [23]. Using Titan X
GPU to implement the system can help us achieve a frame
rate of 10 frames per second or above during processing
for an image frame of VGA resolution. The high frame rate
thus obtained simplifies demonstration to an extent that it
then becomes suitable for driving automated vehicles even
on highways. During the performance testing, the results
showed invariant performance under different textures of
road and various climatic conditions that make the design
well reliable for Indian rural roads as well.

Methodology

Slave Setup

As raspberry pi cannot handle both image processing and
machine learning operations at the same time, a separate
controller is used to control the motors of the bot. The
motors are driven by using a L298N H bridge motor driver.
Enable pins are connected to the PWM-enabled pins to con-
trol the speed of the motor. The powers to the positive and

negative terminals of the motor are handled by the digi-
tal pins of the microcontroller. Figure 1 shows the setup
required.

OpenCV Using C

We have used raspberry pi as our microprocessor. To per-
form image processing on the objects we have used an open
platform called OpenCV. There are other platforms like ten-
sor flow but as OpenCV provides smooth performance we
have decided to use OpenCV. We have used pi cam 2 to
capture video. We have used this camera because we are per-
forming processing with an image resolution of 480 × 360.
Pi cam perfectly supports this resolution and is cheaper than
other cams. After capturing the required frame we first con-
vert the image into signature, before that we have to change
the raspberry pi default BGR format of the image to RGB
format. To detect the lanes we have to apply a perspective
wrap on the image. To analyze an image 5 frames of ref-
erences are needed, object co-ordinate frame, word coor-
dinate frame, camera coordinate frame, image coordinate
frame, image coordinate frame, and pixel coordinate frame.
By applying transformations to all these 5 frames we get a
perceptive wrap of an image. To apply perspective wrap first
we have to create a region of interest around the working
region. Then a perspective transform is taken over the region
to get a bird’s eye view of the image. A fresh frame of the
same image is taken and a canny edge detection algorithm

Fig. 1 Slave setup

Maadhav Kothuri: !!!! By using ANNs (artificial neural
networks), problems caused by video quality were
mitigated since ANNs can handle many more input
variables. This overcomes the barrier to entry of
needing high quality cameras and lighting!

Maadhav Kothuri: Need to react to other vehicles on
the road appropriately

Maadhav Kothuri: Greater time to analyze = greater
accuracy

Maadhav Kothuri: Need good graphics processing
equipment to analyze images so quickly

Maadhav Kothuri: Means that it is not thrown off by
these variable changes

Maadhav Kothuri: Developing system on lower cost
equipment = higher accessibility

Maadhav Kothuri: When using external devices to get
video, it is important to understand the different
formats that data needs to be in to be compatible and
take steps accordingly

Maadhav Kothuri: Split the image into frames to make
analysis easier

Maadhav Kothuri: Which will be given commands
based on the ML algorithm

 SN Computer Science (2021) 2:251251 Page 4 of 9

SN Computer Science

is applied to it. Now the wrapped image is added with this
frame and the lanes can be detected accurately. The actual
distance of the lanes are found out by dividing the region of
interest equally and finding the maximum intensity levels
of each element. Again the array is divided into two parts to
detect the left and right part of the lanes. The array elements
having the max intensity corresponds to the lane position.
After finding the distance of the lanes the midpoint is taken.
Taking the center of the camera frame as then we have used
raspberry pi as our microprocessor. To perform image pro-
cessing on the objects we have used an open platform called
OpenCV.

There are many other platforms for image processing we
have used open CV as it is a open source platform. We have
used pi cam 2 to capture video. We have used this camera
because we are performing processing with image resolu-
tion of 480 × 360. Pi cam perfectly supports this resolution
and is cheaper than other cams. After capturing the required
frame we first convert the image into signature, before that
we have to change the raspberry pi default BGR format of
the image to RGB format. To detect the lanes we have to
apply a perspective wrap on the image.

To apply perspective wrap first we have to create a region
of interest around the working region. Then a perspective
transform is taken over the region to get a bird’s eye view
of the image. A fresh frame of the same image is taken and
canny edge detection algorithm is applied to it. Let f(x, y)
denote the input image and G(x, y) denote the Gaussian
function. By convolving G and f we for a smoothed image,
which is given by fs. After this it is followed up by calcu-
lating the gradient magnitude and direction. The gradient
magnitude is computed at every point and direction to esti-
mate the edge strength and direction at every point, which
is called edge gradient.

The equations of the process involved in canny edge
detection are from Eqs. (1–7) Thresholding of the image is
done and is added with canny edge detected output. Thresh-
olding is done to extract or enhance the image. To extract an
object from the image one way is to separate the object and
background by using a threshold. At any point (x, y) in an
image f(x, y) > T is called an object point, otherwise called
as a background point. Equation (8) gives the mathematical
equation of the process. As our image is a grayscale image
we set T = 0.5. Now the wrapped image is added with this
frame and the lanes can be detected accurately. The actual
distance of the lanes is found out by diving the region of
interest equally and finding the maximum intensity levels
of each element. Again the array is divided into two parts to
detect the left and right part of the lanes. The array elements
having the max intensity corresponds to the lane position.
After finding the distance of the lanes the midpoint is taken.
Taking the center of the camera frame as a reference the
bot has to adjust its position. If the value of the distance is

negative then the bot has to move left. The magnitude of the
turn depends on the distance from center-lane.

Master/Slave Communication

Here parallel communication is setup between the microcon-
troller and raspberry pi using GPIO pins of raspberry pi and
four digital pins of microcontroller. Conditions are applied
for different distances between the frame center and the lane
center. Depending on the conditions the bot is moved left or
right towards the frame center (Figs. 2, 3).

Machine Learning

To detect the traffic signals, obstacles, and traffic signs
labelled machine learning is used, i.e. the data set used
by the authors will be labelled, these labelled images are
compared with the real-time images taken by the cam. To
classify the images we need a machine learning model. To
implement a machine learning model, we require a data set
which sufficient enough for the model to classify between
the images. The authors take 400 samples of the object to
be detected these are called the positive images and then
300 negative images are taken, that is those areas which do
not belong to the object to be detected. Histogram equaliza-
tion is applied to all the images after converting the RGB
image to a grayscaled image. If we consider values of con-
tinuous intensity and if r is the intensities of the image to

(1)G(x, y) = e
−

(
x2+y2

2�2

)

,

(2)fs = G(x, y) ⊗ f (x, y),

(3)Gx =
�fs

�x
,

(4)Gy =
�fs

�y
,

(5)Edge Gradient (G) =

√
G2

x
+ G2

y
,

(6)Angle (�) = tan−1
(
Gy

Gx

)

,

(7)Edge Gradient = ||Gx
|| +

||
|
Gy

||
|
,

(8)t(x, y) =

{
1, if f (x, y) > 0.5

0, if f (x, y) ≤ 0.5
.

Maadhav Kothuri: Max intensity = lane markings

Maadhav Kothuri: Getting rid of noise, which could
"distract" the algorithm and cause it to be less
accurate

Maadhav Kothuri: Rate of change in the image
(basically a derivative for an image)

Maadhav Kothuri: Allows for parallel image analyzing
and machine learning b/c of the microcontroller

Maadhav Kothuri: T is threshold, differentiating the
object from the rest of the image

Maadhav Kothuri: What are the units for T?

Maadhav Kothuri: Help the algorithm learn which is the
image and which is not

Maadhav Kothuri: Adjust to stay in the lane

SN Computer Science (2021) 2:251 Page 5 of 9 251

SN Computer Science

be processed, we focus attention on intensity mappings of
the form s = T(r). The purpose of using histogram equaliza-
tion is to uniformly distribute gray value, by making the
probability distribution function the image intensity uni-
form. By creating a info. file of the images we store the
exact location of the image and also the number of objects
in each image. The info. file is created by using the OpenCV
integrated annotation tool. By using these images a training
system is developed to recognize the object. This training
method involves cascading and then a XML file format of
the learned method is created. This file has to be uploaded
to the program to apply the remaining operations. After cre-
ating the info. file cascade training is done on the image

using opencv_traincascade. For given an training example,
(x1, y1)…(xn, yn), where yi = 0, 1 respectively, the cascade
transform initializes the weights for yi respectively. For
training examples from 0 − N, the transform normalizes the
weights, so that the weights are of the form of probability
distribution. For each feature, we train the classifier which
is restricted to use a single feature, the errors are evaluated
and classifier with the lowest error is taken and the weights
are updated. Finally a classifier strong enough to classify
between is build, which is given by Eqs. (9–11). Where ht is
a classifier, where alpha and beta are used for updation of the
weights. These values are chosen randomly. The best results
of cascade classifier will consist of 38 stages. To train the

Fig. 2 Master–slave communi-
cation setup

Fig. 3 a Positive image. b
Negative image

Maadhav Kothuri: To prevent overfitting?

Maadhav Kothuri: Allows for the processor to analyze
objects from image to image

Maadhav Kothuri: Almost like survival of the fittest...
continue the process until an accurate-enough
classifier is produced

 SN Computer Science (2021) 2:251251 Page 6 of 9

SN Computer Science

detector of image size 240 × 240 a total of 30 min was taken.
After detecting the image, the next step is to stop before the
sign, for this a distance should be known from the bot to the
detected sign. The authors have used Haar cascade transfor-
mation to implement the model. To find the distance we use
linear equations. A linear equation for eg: y = mx + c, where
x is a weight of the equation. This weight and the intercept
are found manually. After getting the distance from the sign
after the sign is detected, a threshold is set to stop the bot
when the distance is reached. The whole working flow of the
system is shown in Fig. 4.

where, update weights is given by:

(9)h(x) =

{

1

N∑

t=1

�t ht(x) ≥
1

2

N∑

t=1

�t,

(10)Where, �t = log
1

�t
,

(11)wt+1,i = wt,i�
1−ei
t

Results and Discussion

Results obtained from this paper are as follows. The first
result is lane detection. From Fig. 5 it has detected the lane
and the lane center is at a distance of − 18 from the frame
center which indicates us to take a left turn and in Fig. 6
it is giving a value zero, which is a condition for forward
direction.

Next part of our paper was to detect the signs in sides of
the roads, we have taken 500 negative images of the stop

Fig. 4 Work flow of the bot

Fig. 5 Lane detection center is − 18 from the frame center

Maadhav Kothuri: Need to recognize, process the sign
and then stop the car before getting to the sign

Maadhav Kothuri: Got this by measuring intensity of
the road markings

Maadhav Kothuri: Figure out how far the bot can
recognize from and when the car needs to start
slowing down

SN Computer Science (2021) 2:251 Page 7 of 9 251

SN Computer Science

sign surroundings and 60 positive images of the stop sign.
By applying Harr cascade transform we have trained our
system to detect the stop sign. From Fig. 7 we have detected
the sign by marking it with a rectangular box.

From the test results the efficiency of detecting the lane in
dark environment is very low. But during sufficient bright-
ness around it was able to distinguish between the sign and
the surroundings properly. The efficiency of detection can be
improved by using good cam’s light night vision camera’s of
raspberry pi is available. During the motor test the bot was
able to move in the centre with a total efficiency of 75%.
Due to the lower frame rates of capture and low processing
speed of our microprocessor the efficiency was reduced to
75%. If we use a processor with RAM of 4 GB the data pro-
cessing and frame rates can be increased i.e. increasing the
efficiency. Iterations were performed for different samples
and number of stages, and evaluation metrics like accuracy,
precision, and recall of detection of the traffic signals where
calculated, Table 1 depicts the results given for different
video samples. Video sample 4 was taken in indoor condi-
tions and all the other samples from Videos 1–3 were taken
from outdoor. In each video sample, the signs were shown
to the bot 12 times. The formula for calculating is given in
Eqs. (12–14) from the confusion metric. Our best results
were from a sample size of 400:300 positive and negative
samples respectively (Fig. 8).

(12)Accuracy =
TP + TN

TP + TN + FP + FN
,

(13)Recall =
TP

TP + FN
,

Conclusion

The objective of the proposed work was to come up with a
cost-effective and a very efficient automatic driving car, with
a learning algorithm that is easy to understand and further
can be improvised. Our bot was successful in following the
straight path when the distance measured was zero, it was
able to detect the stop sign successfully in the outdoor envi-
ronment. But we found that there was a delay in the com-
munication between the raspberry pi and the Arduino. This
was because of the 1 GB RAM of raspberry pi, which was
not enough to perform image processing, machine learn-
ing and also send signals to the Arduino board for motor
control simultaneously. The visual results indicated that our
bot performed to the expectations. To get more smooth per-
formance, the solution is to r use a 4 GB RAM processor.
As the machine learning technique we used required many

(14)Precision =
TP

TP + FP

Fig. 6 Lane detection with distance value 0

Fig. 7 Stop sign detection

Maadhav Kothuri: Cannot detect the color of the lane
markings without enough light

Maadhav Kothuri: Possible solution

Maadhav Kothuri: Didn't need super expensive
cameras

Maadhav Kothuri: Would be impactful in performance
of the vehcile

 SN Computer Science (2021) 2:251251 Page 8 of 9

SN Computer Science

samples of the picture predefined for training. This makes
the process semi-autonomous, so we will have to figure out
some algorithm which will learn by itself without any prede-
fined label for each subject. The camera which we used was
not high-end, so as per the evaluation from Table 1 it clearly
was not able to detect the lanes in the indoor environment.
We have to change the setup when we shift from an outdoor
environment to indoor or vice-versa.

References

 1. Ballard DH, Brown CM. Computer vision. 1st ed. Prentice Hall;
1982.

 2. Huang T, Vandoni CE, editors. Computer vision: evolution and
promise. In: 19th CERN School of Computing. Geneva: CERN;
1996. pp. 21–25. https:// doi. org/ 10. 5170/ CERN- 1996- 008. 21.
ISBN 978-9290830955.

 3. Elmenreich W. Sensor fusion in time-triggered systems. PhD
Thesis (PDF). Vienna, Austria: Vienna University of Technol-
ogy; 2002.

 4. Haghighat MBA, Aghagolzadeh A, Seyedarabi H. Multi-focus
image fusion for visual sensor networks in DCT domain. Com-
put Electr Eng. 2011;37(5):789–97.

 5. Bengio Y, Courville A, Vincent P. Representation learning: a
review and new perspectives. IEEE Trans Pattern Anal Mach
Intell. 2013;35(8):1798–1828. https:// doi. org/ 10. 1109/ tpami.
2013. 50. ArXiv: 1206.5538 freely accessible.

 6. Schmidhuber J. Deep learning in neural networks: an over-
view. Neural Netw. 2015;61:85–117. https:// doi. org/ 10. 1016/j.
neunet. 2014. 09. 003. PMID 25462637. ArXiv: 1404.7828 freely
accessible.

 7. Umbaugh SE. Digital image processing and analysis: human
and computer vision applications with CVIP tools. 2nd ed. Boca
Raton: CRC Press; 2010. (ISBN 978-1-4398-0205-2).

 8. Barrow HG, Tenenbaum JM. Interpreting line drawings as
three-dimensional surfaces. Artif Intell. 1981;17(1–3):75–116.

 9. Lindeberg T. Edge detection. In: Hazewinkel M, editor. Ency-
clopedia of mathematics. Springer Science Business Media;
2001. (ISBN978-1-55608-010-4).

 10. Lindeberg T. Edge detection and ridge detection with automatic
scale selection. Int J Comput Vis. 1998;30(2):117–54.

 11. Anggraini D, Siswantoko W, Henriyan D, Subiyanti DP, Aziz
MVG, Prihatmanto AS. Design and implementation of system
prediction and traffic conditions visualization in two dimen-
sional map (case study: Bandung city). In: 2016 6th Inter-
national conference on system engineering and technology
(ICSET); 2016.

 12. Shapiro L, Stockman G. Computer vision. Prentice Hall Inc.;
2001.

 13. Duda RO, Hart PE. Use of the Hough transformation to detect
lines and curves in pictures. Commun ACM. 1972;15:11–5.

 14. Hough PVC. Method and means for recognizing complex pat-
terns. U.S. Patent 3,069,654, Dec. 18, 1962.

Table 1 Evaluation table for
different samples/sample size

The bold numbers specify the highest value of accuracy for a particular value of Number of positive sam-
ples and Number of negative samples

Video_Samples Number of posi-
tive samples

Number of nega-
tive samples

Accuracy Precision Recall

Video_1 (Out-Door) 150 120 0.831 0.800 0.796
Video_2 (Out-Door) 150 120 0.808 0.785 0.785
Video_3 (Out-Door) 150 120 0.792 0.698 0.769
Video_4 (In-Door) 150 120 0.452 0.328 0.56
Video_1 (Out-Door) 250 170 0.851 0.804 0.774
Video_2 (Out-Door) 250 170 0.827 0.783 0.752
Video_3 (Out-Door) 250 170 0.810 0.775 0.798
Video_4 (In-Door) 250 170 0.505 0.398 0.598
Video_1 (Out-Door) 400 300 0.943 0.900 0.870
Video_2 (Out-Door) 400 300 0.948 0.878 0.922
Video_3 (Out-Door) 400 300 0.946 0.887 0.900
Video_4 (In-Door) 400 300 0.523 0.425 0.659

Fig. 8 Hardware connection

Maadhav Kothuri: So that it can be fully autonomous
and people don't have to supervise the learning of each
individual object every time.

SN Computer Science (2021) 2:251 Page 9 of 9 251

SN Computer Science

 15. Hough PVC. Machine analysis of bubble chamber pictures. In:
Proc. Int. Conf. High Energy Accelerators and Instrumentation;
1959.

 16. Nunes E, Conci A, Sanchez A. Robust background subtraction on
traffic videos. In: 2011 18th International conference on systems,
signals and image processing (IWSSIP); 2011. pp. 1–4.

 17. Lucas BD, Kanade T. An iterative image registration technique
with an application to stereo vision. In: IJCAI81; 1981. pp.
674–679.

 18. Pang CCC, Lam WWL, Yung NHC. A novel method for resolving
vehicle occlusion in a monocular traffic-image sequence. IEEE
Trans Intell Transp Syst. 2004;5:129–41.

 19. Chiu C, Ku M, Wang C. Automatic traffic surveillance system
for vision-based vehicle recognition and tracking. J Inf Sci Eng.
2010;26:611–29.

 20. Gordon RL, Tighe W. Traffic control systems handbook. Wash-
ington, DC, USA: U.S. Department of Transportation Federal
Highway Administration; 2005.

 21. Hsieh J-W, Yu S-H, Chen Y-S, Hu W-F. Automatic traffic surveil-
lance system for vehicle tracking and classification. IEEE Trans
Intell Transp Syst. 2006;7(2):175–87.

 22. Jung Y-K, Ho Y-S. Traffic parameter extraction using video
based vehicle tracking. In: 1999 IEEE/IEEJ/JSAI international
conference on intelligent transportation systems, proceedings, pp.
764–769.

 23. Cheung S-CS, Kamath C. Robust background subtraction with
foreground validation for urban traffic video. EURASIP J Apple
Signal Process. 2005;2005:2330–40.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

